Atomic model of the human cardiac muscle myosin filament.

نویسندگان

  • Hind A Al-Khayat
  • Robert W Kensler
  • John M Squire
  • Steven B Marston
  • Edward P Morris
چکیده

Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional structure of vertebrate cardiac muscle myosin filaments.

Contraction of the heart results from interaction of the myosin and actin filaments. Cardiac myosin filaments consist of the molecular motor myosin II, the sarcomeric template protein, titin, and the cardiac modulatory protein, myosin binding protein C (MyBP-C). Inherited hypertrophic cardiomyopathy (HCM) is a disease caused mainly by mutations in these proteins. The structure of cardiac myosin...

متن کامل

Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.

Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecu...

متن کامل

Biochemical and physiological regulation of cardiac myocyte contraction by cardiac-specific myosin light chain kinase.

Cardiac-specific myosin light chain kinase (cMLCK) is the kinase predominantly responsible for the maintenance of the basal level of phosphorylation of cardiac myosin light chain 2 (MLC2), which it phosphorylates at Ser-15. This phosphorylation repels the myosin heads from the thick myosin filament and moves them toward the thin actin filament. Unlike smooth muscle cells, MLC2 phosphorylation i...

متن کامل

The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.

The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the mos...

متن کامل

Cross-correlated TIRF/AFM shows Self-assembled Synthetic Myosin Filaments are Asymmetric - Implications for Motile Filaments

Myosin-II’s rod-like tail drives filament assembly with a head arrangement that should generate equal and opposite contractile forces on actin – if one assumes that the filament is a symmetric bipole. Self-assembled myosin filaments are shown here to be asymmetric in physiological buffer based on cross-correlated images from both atomic force microscopy (AFM) and total internal reflection fluor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 1  شماره 

صفحات  -

تاریخ انتشار 2013